Elektron 21

ELEKTRON 21 is a new high strength fully heat treatable magnesium based casting alloy for use at temperatures up to 200°C. This alloy has excellent corrosion resistance characteristics and castability.

APPLICATIONS

Magnesium Elektron has developed this lightweight, high performance alloy for motorsport and aerospace applications. It is designed to provide superior mechanical properties and improved corrosion resistance together with good castability.

SPECIFICATIONS

AMS 4429 UNS M12310

CHEMICAL COMPOSITION

 Zinc
 0.2 - 0.5%

 Neodymium
 2.6 - 3.1%

 Gadolinium
 1.0 - 1.7%

 Zirconium
 Saturated

 Magnesium
 Balance

HEAT TREATMENT

Castings are given the following T6 heat treatment to obtain optimum mechanical properties.

Solution treat for 8 hours at 520°C (970°F),

Hot water quench using water at 60-80°C (140-175°F) or polymer quench.

Age for 16 hours at 200°C (400°F), Air cool.

PHYSICAL PROPERTIES

Specific gravity 1.82 Coefficient of thermal $25.3 \times 10^{-6} \text{K}^{-1}$ expansion 116 Wm K-1 Thermal conductivity 1086 Jkg⁻¹K⁻¹ Specific heat Electrical resistivity 94.6 nΩm Modulus of elasticity 44 x 10³ MPa Poissons ratio 0.27 Melting range 545°C-640°C Brinell hardness 65-75

DESIGN DATA

Minimum specification tensile properties.

0.2% Proof stress 145 MPa Tensile strength 248 MPa Elongation 2%

OTHER PROPERTIES

CASTABILITY

Excellent castability as a consequence of low oxidation characteristics.
Fine-grained microstructure.
Pressure tight.

PATTERN MAKERS SHRINKAGE FACTOR

1.5%

WELDABILITY

Weldable by the tungsten arc inert gas process (TIG) with a filler rod of a similar composition. Castings should be heat treated after welding to obtain optimum properties

MACHINING

ELEKTRON 21 castings, like all magnesium alloy castings, machine faster than any other metal.

Providing the geometry of the part allows, the limiting factor is the power and speed of the machine rather than the quality of the tool material. The power required per cubic centimetre of metal removed varies from 9 to 14 watts per minute depending on the operation.

SURFACE TREATMENT

All the normal chromating, anodising and finishing treatments are applicable.

CORROSION RESISTANCE

ASTM B117 Salt spray test Corrosion rate for base metal: 0.13-0.37mg/cm²/day 10-30 mpy

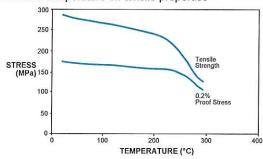
Elektron 21

AMBIENT TEMPERATURE MECHANICAL PROPERTIES

TYPICAL TENSILE PROPERTIES 0.2% Proof stress 170 MPa Tensile strength 280 MPa Elongation 5% TYPICAL COMPRESSIVE PROPERTIES 0.2% Proof stress 168 MPa Ultimate strength 367 MPa TYPICAL SHEAR PROPERTIES Ultimate stress 172 MPa FRACTURE TOUGHNESS 15 MPa ^{-3/2} K_{IC} **FATIGUE PROPERTIES** 5 x 10⁷ cycles Pull-pull fatigue: R = 0.1

115-120 MPa

LOW TEMPERATURE MECHANICAL PROPERTIES


TYPICAL MECHANICAL PROPERTIES AT -35°C

Elongation: 7%
Ultimate tensile strength 270 MPa
Impact value(notched) 1.7J

ELEVATED TEMPERATURE MECHANICAL PROPERTIES

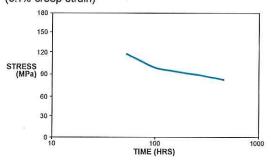

TYPICAL TENSILE PROPERTIES

FIG. 1 Effect of temperature on tensile properties

CREEP PROPERTIES

FIG. 2 Stress/time relationship at 200°C (0.1% creep strain)

